
International Journal of Heat and Mass Transfer 51 (2008) 5887–5894
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate/ i jhmt
Iterative and direct Chebyshev collocation spectral methods
for one-dimensional radiative heat transfer

Ben-Wen Li *, Ya-Song Sun, Yang Yu
Key Laboratory of National Education, Ministry for Electromagnatic Processing of Materials, P.O. Box 314, Northeastern University, Shenyang 110004, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 January 2008
Received in revised form 9 April 2008
Available online 27 June 2008

Keywords:
Radiative transfer
Chebyshev collocation spectral methods
Discrete-ordinates method
0017-9310/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2008.04.048

* Corresponding author. Tel.: +86 24 83681756; fax
E-mail addresses: heatli@hotmail.com, heatli@epm
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equation with participating media is presented; and sequentially the iterative and direct solvers are
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and can capture large oscillations. Numerical results verified the high accuracy of the new method,
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1. Introduction

During the past two decades, lots of efforts have been made to
solve the radiative transfer equation (RTE). The discrete-ordinates
method (DOM) in conjunction with control volume (CV), originally
proposed by Carlson and Lathrop [1] to solve neutron transport,
and later was adopted to solve RTE by Fiveland [2–4], almost en-
joyed the most fast developing and widely applications. Even in re-
cent years, the new methods, approaches, or procedures for RTE in
terms of whether radiation intensity or temperature appeared very
frequently. The former summary or review can be found in text
books [5,6]. Here the authors would like to mention some salient
characteristics of most recent methods or approaches.

Gritzo and Strickland [7] presented the gridless methods for RTE
which is compatible with computational fluid dynamics (CFD)
even using direct numerical simulation (DNS), and recently Liu
and Tan [8,9] further improved this method for radiation transfer
and its combination with conduction. The similar compatibility
of numerical radiative heat transfer with chemical reaction by
DNS is the photon Monte Carlo method presented by Wu, Modest
and Haworth [10]. Finite element (FE) methods for RTE are not a
new methodology, but the least-squares FE proposed by Pontaza
and Reddy [11] can provide p-level convergence. Other methods
are the partial moment entropy approximation [12], the determin-
istic photon free method [13], and the LTSN method [14].
ll rights reserved.
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Spectral methods can provide exponential convergence in space
[15] and have been widely used to solve Navier–Stokes equations
in CFD [16,17], Maxwell equations in electrodynamics [18], and
magnetohydrodynamics (MHD) equations in magneto-fluids-
mechanics [19,20], etc. Despite the high accuracy and efficiency
of spectral methods, there are seldom applications of spectral
methods in radiative heat transfer computation. The main reason
may exist in that the spectral methods are not suitable to the solu-
tions of multidimensional complex geometries. To overcome this
drawback of spectral methods, the spectral element methods
which combined high accuracy of spectral method and flexibility
to complex geometry of finite element method, were developed
[11,21]. For pure spectral methods, the three works related to radi-
ative transfer appeared in [22–24]. However, all these three works
are not really correlated with ‘‘heat transfer” by thermal radiation
but with quantum physics [22] or electromagnetic wave propaga-
tion and scattering [23,24]. Besides this fact, their final resultant
algebraic equations need to be solved are in coefficient space, in
another word, spectral equations. Very recently, Aouled-Dlala
et al. [25] used the finite Chebyshev transform (FCM) for the dis-
cretization of angular derivative terms in cylindrical and spherical
systems. According to the authors’ knowledge, there is not any
work on Chebyshev collocation methods for radiative heat transfer.

In the following of this paper, the Chebyshev collocation meth-
ods for 1D RTE will be presented in detail in Section 2. The discret-
ized equations can be solved iteratively and directly, and the
processes will be described in Sections 3 and 4, separately. Valida-
tions by typical cases with exact solutions and other numerical re-
sults are stated in Section 5. Finally the last section gives the
conclusions and remarks.
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2. Chebyshev collocation method for 1D RTE

2.1. Governing equation and boundary condition

The governing equation for radiative heat transfer in absorbing-
emitting and scattering gray medium in term of radiation intensity
reads [5,6]

X � rIðr;XÞ þ ðkþ rÞIðr;XÞ ¼ kIbðrÞ

þ r
4p

Z
X0¼4p

UðX0 ! XÞIðr;X0ÞdX0 ð1Þ

with boundary conditions

Iðr;XÞ ¼ ISðr;XÞ þ eIb rð Þ þ q
4p

Z
n�X0

Iðr;X0ÞdX0 ð2Þ

where all the symbols’ explanations are referred to [11].
The anisotropic scattering phase function in Eq. (1), U(X

0
? X),

in term of direction cosine l is defined by

Uðl0 ! lÞ ¼ Kðl0;lÞ ¼
XL

l¼0

dlPlðlÞPlðl0Þ; d0 ¼ 1 ð3Þ

where Pl(l) are Legendre polynomials and dl are specified corre-
sponding coefficients, and L = 0 corresponds to isotropic scattering.

The one-dimensional DOM form of Eq. (1) gives

lm oImðxÞ
ox

þ bðxÞImðxÞ ¼ rðxÞ
2

XM

m0¼0

Kðlm0 ;lmÞIm0 ðxÞwm0

þ kðxÞIbðxÞ; 8m ð4Þ

where b(x) = k(x) + r(x), is called extinction coefficient.

2.2. Chebyshev collocation spectral formulation

For Eq. (4), M directions, {l1,l2, . . . ,lM}, together with their cor-
responding weights, wm (m = 1,2, . . . ,M), are selected to discretize
the angular dependent intensity, while for space discretization,
the Chebyshev collocation spectral method will be used. Similar
as in [11], the strategy of the RTE discretization in this article be-
longs to the category of so called space-angle decoupling.

First, the mapping of arbitrary interval [X1,X2] to standard inter-
val [�1,1] is needed to fit the requirement of Chebyshev
polynomial

s ¼ 2x� ðX2 þ X1Þ
X2 � X1

ð5Þ

After mapping Eq. (4) becomes

lm 2
X2 � X1

� �
oImðsÞ

os
þ bðsÞImðsÞ

¼ rðsÞ
2

XM

m0¼1

Kðlm0 ;lmÞIm0 ðsÞwm0 þ kðsÞIbðsÞ; m ¼ 1;2; . . . ;M

ð6Þ

The Gauss–Lobatto collocation points [16,17,26] are used for
spatial discretization

si ¼ cos
pi
N
; i ¼ 0;1; . . . ;N ð7Þ

The Chebyshev approximation of radiative intensity reads

Im
N ðsÞ ¼

XN

k¼0

bIm
k TkðsÞ ð8Þ

where the Tk(s) is the first kind Chebyshev polynomial, the coeffi-
cients Îm

k , k = 0,1, . . . ,N are determined by requiring Im
N ðsÞ to coincide
with Im(s) at the collocation points si, i = 0,1, . . . ,N, and the polyno-
mial of degree N defined by Eq. (8) can be the Lagrange interpola-
tion polynomial based on the set {si} like

Im
N ðsÞ ¼

XM

j¼0

hjðsÞImðsjÞ ð9Þ

with Im
N ðsÞ ¼ ImðsjÞ, and hj(s) is the polynomial of degree N and is a

function of the first order derivative of Chebyshev polynomial. Its
detail definition and expression can be found in [17].

The representation Eq. (9) is equivalent to Eq. (8) and will be
used in our formulations to avoid spectral coefficients solution,
and further to avoid fast cosine transformation.

After substitution of derivative matrices in s [16,17,26], the dis-
cretized form of Eq. (6) readsXN

k¼0

Am
ikIm

k þ
XN

k¼0

BikIm
k ¼ fm

i ; m ¼ 1;2; . . . ;M ð10Þ

where

Am
ik ¼ lm 2

X2 � X1

� �
Dð1Þs;ik ð11Þ

Bik ¼
bðsiÞ; i ¼ k

0; otherwise

�
ð12Þ

f m
i ¼

rðsiÞ
2

XM

m0¼1

Kðlm0 ;lmÞIm0 ðsiÞwm0 þ kðsiÞIbðsiÞ ð13Þ

and Dð1Þs;ik is the first order derivative matrix in s direction corre-
sponding to Gauss–Lobatto collocation points and its detail compu-
tation can be found in [16,17,26].

Eq. (10) is valid for all directions, and for each direction m, the
matrices A and B have the same size and can be incorporated into
one matrix. Thereafter Eq. (10) can be rewritten asXN

k¼0

Cm
ikIm

k ¼ fm
i ; m ¼ 1;2; . . . ;M ð14Þ

where Cm
ik ¼ Am

ik þ Bik.
Eq. (14) has to be solved with appropriate boundary conditions.

The boundary conditions, whether they are of Dirichlet or Neu-
mann type, can easily be imported and the detail can be found in
text book like [15–17,26].

We finally rewrite Eq. (14) as following after boundary condi-
tions import

CmIm ¼ Fm; m ¼ 1;2; . . . ;M ð15Þ
3. Iterative solver

From the above formulations we know that the unknown vector
Im is also included in the right hand side of Eq. (15). The intuitive
decision is to solve it iteratively. The implementation of iterative
solver for Eq. (15) can be carried out according to the following
routine:

Step 1: Import boundary conditions.
Step 2: Give Im an initial assumption (zero for example) in all

directions except for boundary conditions.
Step 3: Compute Fm according to Eq. (13).
Step 4: Directly solve Eq. (15) by Im = (Cm)�1Fm for all m.
Step 5: Compare the newly solved Im with their initial assumption

or former iteration values for all directions and nodes and
find the maximum absolute difference.

Step 6: Terminate the iteration if the maximum absolute differ-
ence is less than the tolerance (10�12 for example), other-
wise go back to step 3.
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In principle, there are no obstacles to execute this routine. How-
ever, great care should be taken in choosing the number of nodes,
N. Because the matrix A related to the first order derivative matrix
D, corresponding to Chebyshev Gauss–Lobatto collocation points,
can be ill-conditioned with its elemental values being as large as
1014 [17]. The detail discussions concerned with condition number
and spectral radius are referred to [17,26,27].

4. Direct solver

For Eq. (15), direct solution is certainly more attractive due to
the high efficiency when the computer memory is sufficient.

First, assemble all directional radiative identities into to one
large vector

I ¼ ðI1
0; I

1
1; . . . ; I1

N ; . . . ; IM
0 ; I

M
1 ; . . . ; Im

N Þ
T ð16Þ

Accordingly, the vector Fm, being of the right hand side of Eq.
(15), is also reconstructed to be of rectangular matrix which there-
after is free of up index

FðsÞ ¼ HI ð17Þ

H ¼
H1

..

.

HM

2664
3775 ð18Þ

where

Hm ¼ Hm;1 Hm;2 � � � Hm;M
� �

ð19Þ

and

Hm;j ¼ diagðhm;j
0 ; . . . ;hm;j

N Þ ð20Þ

hence

hm;j
i ¼

r sið Þ
2

wjKðlm;ljÞ þ kðsiÞIbðsiÞ ð21Þ

Afterward, Eq. (15) becomes

CI ¼ HI ð22Þ

where

C ¼ diagðC1; . . . ;CMÞ ð23Þ

Keep in mind that, Eq. (22) is not the final form for direct solver
because the boundary conditions have not been imported yet, and
of course it will give unique solutions for preferred cases in which
the boundary conditions are specified, as can be known in the next
section.
Table 1
MAX, MSQ and L2 errors of the spectral solver for example 1

N eMAX eMSQ eL2

5 10�2 10�2 10�2

9 10�5 10�5 10�5

13 10�9 10�9 10�9

17 10�13 10�13 10�13

21 10�15 10�15 10�16
5. Numerical results

To verify our spectral solvers for 1D RTE, three examples are
adopted. The first example, which is copied from [11], is mainly
used to test the accuracy of the method in the case of a localized
sharp gradient of intensity. The second example is used mainly
to test the suitability for large oscillations, and it is copied from
[28]. The last one is much complicated with space-dependent albe-
do and highly anisotropic scattering [29].

5.1. Example 1: transparent boundaries, no incident radiation,
isotropic scattering medium within bi-unit strip

To show the exponential space convergence of Chebyshev collo-
cation method for 1D RTE, a problem considering transparent
boundaries, no incident radiation, and isotropic scattering medium
within bi-unit strip is adopted [11]. Its modeled equation is
l oIðx;lÞ
ox

þ Iðx;lÞ ¼ f ðx;lÞ in ½X1;X2� �X ¼ ½�1;1� �X ð24Þ

with boundary conditions

Ið�1;lÞ ¼ Ið1;lÞ ¼ 0 ð25Þ

Giving a prescribed forcing function

f ðx;lÞ ¼ sinðplÞ½lp cosðpxÞ þ sinðpxÞ� ð26Þ

The analytic solution of Eq. (24) is given by I(x,l) = sin(p
x)sin(pl) under such conditions.

Here we used the S2 approximation [5,6] for angular discretiza-
tion, and l = 0.5773503. Similar as in many references for spectral
methods applications, here three measures [30] are used to esti-
mate the errors of our solvers.

eMAX ¼max kIi � Iexact
i k ð27Þ

eMSQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
i¼1 ðIi � Iexact

i Þ2

ðN � 1Þ

s
ð28Þ

e2
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
i¼1 ðIi � Iexact

i Þ2PN�1
i¼1 ðI

exact
i Þ2

vuut ð29Þ

These three errors against resolutions for example one are list in
Table 1. Obviously one can see that the spectral solver can provide
very high accuracy and the errors’ decrease show the exponential
trends.

5.2. Example 2: Gaussian shaped radiative source term between 1D
parallel black slab

Capture the large oscillations of problems is an important index
for numerical methods. Here we adopt the example [28] with
Gaussian shaped radiative source term and nonscattering medium.
This problem provides a very large nonphysical oscillation and its
modeled equation is

l oIðx;lÞ
ox

þ kIðx;lÞ ¼ e�ðx�cÞ2=a2
; ½X1;X2� �X ¼ ½0;1� �X ð30Þ

with boundary conditions

Ið0;lÞ ¼ k�1e�c2=a2
; l > 0 ð31aÞ

Ið1;lÞ ¼ k�1e�ð1�cÞ2=a2
; l < 0 ð31bÞ

The analytic solution of Eq. (30) in the case of l > 0 is given by

Iðx;lÞ ¼ Ið0;lÞ exp � kx
l

� �
� a

ffiffiffiffi
p
p

2l

� exp � k
l

x� a2k
4l
þ c

� �� 	� 

� erf

ak
2l
þ c � x

a

� �
� erf

ak
2l
þ c

a

� �� 	
ð32Þ

Using our direct solver to the case of c = 0.5, a = 0.02, l = 1.0,
and an optical thickness of sL = kx = 0.1. The results against three
different resolutions are shown in Fig. 1.
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Fig. 1. Distribution of radiative intensity with different resolutions for example 2.
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Fig. 1 shows that when the resolution is up to 43, our results
agree well with the exact solution and the oscillation in the middle
is captured. The authors like to mention that, the nodes of Cheby-
shev collocation are clustered on two ends due to the intrinsic
characteristic of Chebyshev collocation points, but the oscillation
happened in the middle. So we used the grids transform [31] and
gave uniform spacing grids in this example.

5.3. Example 3: anisotropic and space-dependent scattering medium
with incident radiation within 1D parallel planes

From previous two examples we know that only the direct spec-
tral solver is needed up to now because the unknown radiative
intensities are not included in the right hand side of discretized
RTE and only one direction cosine is used. From practical sense,
more complicated cases may appear such as anisotropic scattering.
Now one such typical example [29] is adopted in which the aniso-
tropic and space-dependent scattering medium is included. Its 1D
DOM governing equation is referred to Eq. (4) on the domain of
[X1,X2] �X = [0,1] � [�1,1] but with a zero source term. The
space-dependent scattering coefficient is r(x) = x and extinction
coefficient is b(x) = 1. In [29], the authors represented the albedo
(the ratio of scattering coefficient to extinction coefficient) in terms
of Legendre polynomials, and solved the forward and backward
radiation intensities, and radiation fluxes analytically. Now the
cases together with their results are used as benchmark in many
references. Same as in [11], two cases of external irradiation at a
boundary are considered, namely, isotropic incidence and aniso-
tropic incidence.

This time the S8 approximation [6] is used for angular discreti-
zation with the discrete-ordinates as {�0.897327, �0.593795,
�0.406205, �0.102672, 0.102672, 0.406205, 0.593795, 0.897327}
and corresponding weights wm = 0.25. In order to check the influ-
ences of discrete-ordinates number on results, the S10 approxima-
Q m ¼

PM=2

j¼1
Hm;jð1 : N;1ÞIj

0 þ
PM

j¼M=2þ1
Hm;jð1 : N;NÞIj

N þ Cmð1 : N;0ÞIm
0

if lm > 0PM=2

j¼1
Hm;jð0 : N � 1;1ÞIj

0 þ
PM

j¼M=2þ1
Hm;jð0 : N � 1;NÞIj

N þ Cmð0 : N �

if lm < 0

8>>>>>>>>><>>>>>>>>>:
tion is used also. The discrete-ordinates and corresponding weights
for S10 can be found in [6]. The medium has a forward scattering
with L = 7 and dl = {1.0, 1.98398, 1.50823, 0.70075, 0.23489,
0.05133, 0.00760, 0.00048} in Eq. (3).

5.3.1. Case 1: isotropic incidence
The expressions of boundary conditions are

Ið0;lÞ ¼ IS
1ð0;lÞ ¼ 1 on x ¼ 0; l 2 ð0;1� ð33aÞ

Ið1;lÞ ¼ IS
2ð1;lÞ ¼ 0 on x ¼ 1; l 2 ½�1;0Þ ð33bÞ

The execution of the iterative solver for multi discrete-ordinates
M = 8 of this example is nothing different from Section 3. However,
the import of boundary conditions for direct solver needs more de-
tail description continued from Section 4.

Going back to Eq. (22), one can get the new form after boundary
conditions imported

ð~C � ~HÞ~I ¼ Q ð34Þ

In Eq. (34), ~I comes from Eq. (16) but the boundary node values
were excluded, ~C and ~H come from Eq. (22) and include the conse-
quently exchanges due to boundary conditions importing, and Q is
an enlarged constant vector which appears also due to boundary
conditions importing. Their detailed expressions are given in the
following according to the present boundary conditions Eq. (33),
respectively.

I ¼ ðI1
1; I

1
2; . . . ; I1

N; . . . ; IM
0 ; I

M
1 ; . . . ; IM

N�1Þ
T ð35Þ

~C ¼ diagð~C1; . . . ; ~CMÞ ð36Þ

where

~Cm ¼ Cmð1 : N;1 : NÞ if lm > 0
Cmð0 : N � 1; 0 : N � 1Þ if lm < 0

�

~H ¼

~H1;1 ~H1;2 � � � ~H1;M

~H2;1 ~H2;2 � � � ~H1;M

..

. ..
. . .

. ..
.

~HM;1 ~HM;2 � � � ~H1;M

266664
377775

ð37Þ

where

~Hm;j ¼

~Hm;jð1 : N;1 : NÞ if lm > 0 and lj > 0
~Hm;jð1 : N;0 : N � 1Þ if lm > 0 and lj < 0
~Hm;jð0 : N � 1;1 : NÞ if lm < 0 and lj > 0
~Hm;jð0 : N � 1;0 : N � 1Þ if lm < 0 and lj < 0

8>>>><>>>>:

Q ¼

Q 1

Q 2

..

.

Q M

2666664

3777775
ð38Þ

where
1;0ÞIm
N



Fig. 2. Contour plot of the computed radiation intensity, I(x,l) in space-angle domain. Case 1 of example 3. (a) S8 for angular discretization and (b) S10 for angular
discretization.
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Fig. 4. Computed exit distribution of radiation intensity I+ at x = 1. Case 1 of exa-
mple 3.
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After the description of boundary conditions import, now we
turn to the results of case 1.

Fig. 2 shows the computed contour plots of radiative intensity
I(x,l) with a resolution of N = 11. The left one is from S8 for angular
discretization, and the right one is from S10. Compared our results
with the plot (b), by space-angle coupled least-squares finite ele-
ment method (LS is named in [11]), of Fig. 3 in [11], one can con-
clude that, our results from S10 are better than those from S8, but
all the present results are less accurate than those by LS. The rea-
sons may exist as following.

As mentioned in [11], the boundary conditions implicitly allow
for a sharp discontinuity in the radiation intensity angular distri-
bution at l = 0, e.g., I(0,0�) may not be equal to I(0,0+). In [11], a
double fringe of nodes at l = 0, one for l = 0� and the other for
l = 0+, are used to allow for such possibilities. However, in our
space-angle decoupled spectral DOM (abbreviate to SP-DOM later
and in figure and tables), it is impossible to do this because the
DOM quadrature rule is level-symmetric, i.e., it does not contain
the point lm = 0.
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Fig. 3. Computed exit distribution of radiation intensity I� at x = 0. Case 1 of exa-
mple 3.
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Fig. 5. Computed backward radiation heat flux distribution. Case 1 of example 3.



0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

LS
 LS-DOM
SP-DOM

N = 11

Fig. 6. Computed forward radiation heat flux distribution. Case 1 of example 3.

Table 2
Hemispherical reflectivity and transmissivity of a slab with unit thickness, transpar-
ent boundaries

LS LS-DOM SP-DOM Analytic

Reflectivity 0.020878 0.020639 0.020740 0.020878
Transmissivity 0.386094 0.386612 0.386735 0.386096

Case 1 of example 3.
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Exit distributions of radiative intensity I� at x = 0 and I+ at x = 1
are shown in Figs. 3 and 4, respectively. For the purpose of compar-
ison, the analytic values from [29] are plotted, and the results by LS
and LS-DOM from [11] are copied. Obviously our results agree very
well with those.

The backward and forward radiation heat flux distributions, q�

and q+ are shown in Figs. 5 and 6, respectively. Similarly, the re-
sults by LS and LS-DOM from [11] are copied for comparison (this
time the analytic values are unavailable). One can see that our SP-
DOM almost gives the identical heat flux distributions as both LS
and LS-DOM did.
Fig. 7. Contour plot of the computed radiation intensity, I(x,l) in space-angle domai
discretization.
Finally, the hemispherical reflectivity and transmissivity of the
slab, q�(x = 0) and q+(x = 1), are compared with the analytic values
[29] and results by LS and LS-DOM [11]. Table 2 also shows that
our SP-DOM can provide good results.

5.3.2. Case 2: anisotropic incidence
In this case, the incident radiation at the boundary x = 0 arrives

along specified directions, while the scattering law and space-
dependent scattering coefficient remain the same as in case 1.
Now the expressions of boundary conditions are complicated and
as follows [11]:

Ið0;lÞ ¼ IS
1ð0;lÞ ¼ gðlÞ on x ¼ 0; l 2 ð0;1� ð39aÞ

Ið1;lÞ ¼ IS
2ð1;lÞ ¼ 0 on x ¼ 1; l 2 ½�1;0Þ ð39bÞ

where

gðlÞ ¼

0; 0:0 < l 6 0:1
1
2 1þ sin p

0:1 ðl� 0:15Þ
� �� �

; 0:1 6 l 6 0:2
1; 0:2 6 l 6 0:5
1
2 1þ sin p

0:1 ðl� 0:55Þ
� �� �

; 0:5 6 l 6 0:6
0; 0:6 < l 6 1:0

8>>>>>><>>>>>>:
ð40Þ

which defines a piecewise constant radiation intensity distribution
between 0 and 1, with smooth transitions by sine curves.

The process of boundary conditions import is the same as in
case 1.

Fig. 7 shows the computed contour plots of radiative intensity
I(x,l) with a resolution of N = 11. Same as in case 1, the left plot
is from S8 for angular discretization, and the right one is from
S10. As one can see that, the left plot from S8 for angular discretiza-
tion is almost the same as the plot (b), by LS-DOM, of Fig. 8 in [11],
and both of them are prone to the ray effect because the space-an-
gle decoupled formulations act the base. On the other hand, our
right plot from S10 is very similar to the plot (a), by LS, of Fig. 8
in [11]. Carefully comparing our right plot of Fig. 7 with the plot
(a) of Fig. 8 in [11], one can find the differences. Both widths of
red core part along l axis are almost the same, but the widths of
green parts on two plots are very different with ours being larger.
This phenomenon can be explained that more discrete-ordinates
can span more different incident directions. From this it is proved
n. Case 2 of example 3. (a) S8 for angular discretization and (b) S10 for angular



-1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.000

0.005

0.010

0.015

0.020

I
 (

 x
 =

 0
 )

μ

 LS
LS-DOM
SP-DOMN = 11

Fig. 8. Computed exit distribution of radiation intensity I� at x = 0. Case 2 of exa-
mple 3.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

I
(x

=1
)

μ

LS
LS-DOM
SP-DOM

N = 11

Fig. 9. Computed exit distribution of radiation intensity I+ at x = 1. Case 2 of exa-
mple 3.

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

q

x

LS
LS-DOM
SP-DOM

N = 11

Fig. 10. Computed backward radiation heat flux distribution. Case 2 of example 3.
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Fig. 11. Computed forward radiation heat flux distribution. Case 2 of example 3.

Table 3
Hemispherical reflectivity and transmissivity of a slab with unit thickness, transpar-
ent boundaries

Formulation p-level Reflectivity Transmissivity

LS 4 0.033855 0.205899
6 0.033849 0.205897
8 0.033849 0.205897

LS-DOM 4 0.025182 0.162091
6 0.025290 0.162969
8 0.025422 0.163365

SP-DOM 11 (Resolution) 0.032084 0.189536

Case 2 of example 3.

Table 4
CPU time comparison between the iterative and direct solvers for example 3

Resolution CPU time of direct solver (s) CPU time of iterative solver (s)

11 0.016 0.047
21 0.046 0.063
31 0.063 0.074
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again that the ray effect can be mitigated by adding discrete-ordi-
nates [32–36].

Exit distributions of radiative intensity I� at x = 0 and I+ at x = 1
are shown in Figs. 8 and 9 using S8, respectively. Again the results
by LS and LS-DOM from [11] are copied. This time our results are
closer to the results of LS-DOM.

The backward and forward radiation heat flux distributions, q�

and q+ are shown in Figs. 10 and 11 using S10, respectively. Again
the results by LS and LS-DOM from [11] are copied for comparison.
The results indicate that our q� distribution (see Fig. 10) is closer to
that of LS, while our q+ distribution (see Fig. 11) is something close
to that of LS-DOM.

Finally, the hemispherical reflectivity and transmissivity of the
slab, q�(x = 0) and q+(x = 1) using S10, are listed and compared with
those results by LS and LS-DOM [11]. Table 3 shows that the accu-
racy of SP-DOM is in between of LS and LS-DOM. The values of LS
and LS-DOM in Table 3are listed against p-level. However, we
found that the values of SP-DOM almost do not change when the
resolution N = 11.

Our direct solver is applied to examples 1 and 2, but the both
iterative and direct solvers are applied to example 3. As expected,
compared with the iterative solver the direct solver can save much
more CPU time as listed in Table 4. The computer we used is an In-
tel Pentium processor with 3.4 GHz frequency and 1.5 GB memory.
In Table 4, the tolerance for iterative solver is 10�12 and the CPU
time is the same for both cases 1 and 2 in example 3 whether using
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iterative or direct solver. Clearly, the CPU time differences will
trend to be small with the resolution increasing due to large mem-
ory requirement by direct solver. Both iterative and direct solvers
can provide the 12-decimal same values when the tolerance of
iterative solver is 10�12.

6. Conclusions and remarks

The Chebyshev collocation spectral method for 1D RTE with
anisotropic, space-dependent scattering medium is presented,
and both iterative and direct solvers are developed. The numerical
results for examples with analytical solutions verified the present
solvers based on the Chebyshev collocation spectral method can
provide exponential space convergence and can capture very large
oscillations. Compared with newly appeared methods such as
least-square finite elements method (LS or LS-DOM so called), from
the formulations and implementations we can conclude that the
present method, SP-DOM so called, is simple and efficient.

As to multidimensional problems, the extensions are straight-
forward. However, as mentioned in the section of introduction,
the multidimensional geometries should be regular, and the com-
puter memory should be big enough, especially for participating
media. In fact, the authors are developing the spectral cods for
3D problems.
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